THE CHINESE UNIVERSITY OF HONG KONG
 MATH3270B HOMEWORK1 SOLUTION

Question 1:
(1) We multiply t on the both sides of the equation, then the new equation can be written as:

$$
\frac{d}{d t}\left(t^{5} y\right)=t e^{-t}
$$

integral on the both sides, we get

$$
t^{5} y=-t e^{-t}-e^{-t}+c
$$

where the constant $c=0$ by initial data. Hence, $y=\frac{-t e^{-t}-e^{-t}}{t^{5}}$.
(2) The equation can be written as:

$$
\frac{d}{d t}(\sin t \cdot y)=2 e^{t}
$$

integral on the both sides, we get the solution:

$$
y=\frac{2 e^{t}+a \sin (1)-2 e}{\sin t} .
$$

Question 2: This is a separable equation, we separate the equation, integral on the both sides and use the initial data to get the solution:

$$
y^{3}-6 y^{2}=x+x^{3}-5 .
$$

Now since $y^{3}-6 y^{2} \in(-\infty,+\infty)$, i.e. can take all values on the real line. Hence it's sufficient to ensure $3 y^{2}-12 y \neq 0$, that is $y \neq 0,4$. We substitute to the solution to find the valid interval of solution is $(-\infty,+\infty) \backslash\left\{x_{1}, x_{2}\right\}$, where:

$$
\begin{gathered}
x_{1} \text { is the solution of } x^{3}+x-5=0, \\
x_{2} \text { is the solution of } x^{3}+x-5=-32 .
\end{gathered}
$$

Notice that these two values are the points of the tangent lines are vertical.(See the figure bellow)

Figure 1: $y^{3}-6 y^{2}=x+x^{3}-5$.

Question 3:
(1) We solve this equation with following cases:
(a) If $a=b=0$, the solution is $y=K$, where K is a constant and $K \neq-\frac{d}{c}$.
(b) In this case, we consider x is a function of y, then we get:

$$
\begin{equation*}
\frac{d x}{d y}=\frac{c y+d}{a y+b} \tag{1}
\end{equation*}
$$

we divide this into two cases.
(i) If $a=0, b \neq 0$, the (1) becomes $\frac{d x}{d y}=\frac{c y+d}{b}$. Hence, the solution is $x=$ $\frac{c}{2 b} y^{2}+\frac{d}{b} y+K$, where K is a constant.
(ii) If $a \neq 0$, then the (1) becomes:

$$
\frac{d x}{d y}=\frac{c}{a}+\frac{a d-b c}{a} \frac{1}{a y+b}
$$

integral on the both sides, we get:

$$
x=\frac{c}{a} y+\frac{a d-b c}{a^{2}} \ln |a y+b|+K \quad(a y+b \neq 0)
$$

where K is a constant.
(2) This question is wrong since the initial data cannot ensure the existence of solution, and we change the initial data to be $y(1)=1$. We multiply y on the both sides of the equation, then the equation becomes

$$
\begin{equation*}
y^{2} d t+\left(2 t y-3 y^{2} e^{y}\right) d y=0 \tag{2}
\end{equation*}
$$

one can check that (2) is an exact equation. Hence the solution is $t y^{2}-\left(3 y^{2} e^{y}-6 y e^{y}+6 e^{y}\right)=$ $1-3 e$.

Question 4:
(1) Here $M_{y}=e^{x} \cos y-3 \sin x, N_{y}=e^{x} \cos y-3 \sin x$, hence this equation is exact, and the solution is

$$
e^{x} \sin y+3 y \cos x=c,
$$

where c is a constant.
(2) In this equation, $M_{y}=\frac{x}{y}+x, N_{y}=\frac{y}{x}+y$. Hence this equation is not exact.
(3) Here $M_{y}=\frac{3 x y\left(x^{2}+y^{2}\right)^{1 / 2}}{\left(x^{2}+y^{2}\right)^{3}}, N_{x}=\frac{3 x y\left(x^{2}+y^{2}\right)^{1 / 2}}{\left(x^{2}+y^{2}\right)^{3}}$. Hence, this equation is exact and the solution is

$$
\left(x^{2}+y^{2}\right)^{-1 / 2}=c,
$$

where c is a constant.

Question 5:

If $M d x+N d y=0$ has an integrating factor μ, then we have $(\mu M)_{y}=(\mu N)_{x}$, i.e.

$$
\begin{equation*}
\mu\left(N_{x}-M_{y}\right)=M \mu_{y}-N \mu_{x} \tag{3}
\end{equation*}
$$

Now if μ has a form of $\mu(x y)$, then we deduce that $\mu_{x}=y \mu^{\prime}, \mu_{y}=x \mu^{\prime}$. Then the (3) becomes $\mu^{\prime}=R \mu$. Finally, we deduce that $\mu=C e^{\int R}$, where C is a constant.

